字体:大 中 小
护眼
关灯
上一页
目录
下一页
第二百五十七章 见证奇迹吧!(上) (第5/6页)
什么没有? 没错! 用距离的差除以时间差就得到了速度,再用速度的差除以时间差就得到了加速度,这两个过程都是除以时间差。 那么...... 如果把这两个过程合到一块呢? 那是不是就可以说: 距离的差除以一次时间差,再除以一次时间差就可以得到加速度? 当然了。 这只是一种思路,严格意义上来说,这样表述并不是很准确,但是可以很方便的让大家理解这个思想。 如果把距离看作关于时间的函数,那么对这个函数求一次导数: 就是上面的距离差除以时间差,只不过趋于无穷小,就得到了速度的函数、 对速度的函数再求一次导数,就得到了加速度的表示。 鲜为人同学们懂不懂不知道,反正在场的这些大佬们很快便都想到了这一点。 是的。 之前所列的函数f(x,t)描述的内容,就是波段上某一点在不同时间t的位置! 所以只要对对f(x,t)求两次关于时间的导数,自然就得到了这点的加速度a。 因为函数f是关于x和t两个变量的函数,所以只能对时间的偏导?f/?t,再求一次偏导数就加个2上去。 因此很快。 包括法拉第在内,所有大佬们都先后写下了一个数值: 加速度a=?2f/?t2。 而将这个数值与之前的合力与质量相结合,那么一个新的表达式便出现了: f=t·sin(θ Δθ)-t·sinθ=μ·Δx?2f/?t2。 随后威廉·韦伯认真看了眼这个表达式,眉头微微皱了些许: “罗峰同学,这就是最终的表达式吗?我似乎感觉好像还能化简?” 徐云点了点头: “当然可以。” f=t·sin(θ Δθ)-t·sinθ=μ·Δxa?2f/?t2。 这是一个最原始的方程组,内容不太清晰,方程左边的东西看着太麻烦了。 因此还需要对它进行一番改造。 至于改造的思路在哪儿呢? 当然是sinθ了。 只见徐云拿起笔,在纸上画了个直角三角形。 众所周知。 正弦值sinθ等于对边c除以斜边a,正切值tanθ等于对边c除以邻边b。 徐云又画了个夹角很小的直角三角形,角度估摸着只有几度: “但是一旦角度θ非常非常小,那么邻边b和斜边a就快要重合了。” “这时候我们是可以近似的认为a和b是相等的,也就是a≈b。” 随后在纸上写到: 【于是就有c/b≈c/a,即tanθ≈sinθ。】 【之前的公式可写成f=t·tan(θ Δθ)-t·tanθ=μ·Δxa?2f/?t2。】 “稍等一下。” 看到这句话,法拉第忽然皱起了眉头,打断了徐云。 很明显。 此时他已经隐隐出现了掉队的迹象: “罗峰同学,用tanθ替代sinθ的意义是什么?” 徐云又看了小麦,小麦当即心领神会: “法拉第先生,因为正切值tanθ还可以代表一条直线的斜率呀,也就是代表曲线在某一点的导数。” “正切值的表达式是tanθ=c/b,如果建一个坐标系,那么这个c刚好就是直线在y
上一页
目录
下一页